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this figure, the unshared O atoms are in the staggered 
conformation, whereas (b) and (c) represent two 
possible eclipsed forms. Further classification of the 
discussed group of compounds is based on the value of 
the X - O - X  interbond angle which, in theory, can vary 
from 102 to 180 ° (Clark, 1972). Usually it falls 
within the range 110-155 o. The Mo2 O2- ion described 
in the present paper is close to the configuration in 
Fig. 3(c) with a twist angle of 12 ° and M o - O - M o  
angle of 161 o. 
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II.  The Crystal Structure of Phase I 
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Phase I of CBr 4 (above 47°C) is cubic, space group Fm3m, with a = 8.82 A, Z = 4. The molecules are 
orientationally disordered and the structure is described by the use of symmetry-adapted functions. The 
orientational probability is discussed in terms of these functions. 

Introduction 

The high-temperature phase of CBr 4 (above 47°C)  is 
'plastic' with the molecules orientationally disordered. 

As a first approximation, the disorder can be inter- 
preted by assuming that the molecule occupies at 
random any one of N distinguishable orientations, the 
mean symmetry being cubic (Frankel model). If one 
neglects correlations, thermal entropy, etc., the tran- 
sition entropy is approximately z J S  t = R In N. 

In CBr 4, A S t = 4 . 9 8  cal K -~ mol -~ (Marshall, 
Staveley & Hart, 1956; Hildebrand & Scott, 1950). 

Guthrie & McCullough (1961) suppose that the 
orientational disorder corresponds to the 10 distin- 
guishable orientations of the combined 7",1 and C3,, 
symmetry (R In 10 = 4.58 cal K -~ mol-l). 

In a previous paper (More, Baert & Lefebvre, 1977), 
we reported that one can expect six different molecular 
orientations corresponding to D2d local symmetry. 

However, a classical refinement of the high- 
temperature-phase diffraction data, based on a Frankel 
model with six equilibrium positions, has failed. 

In this paper, we report the structure refined by the 
use of symmetry-adapted functions. This method takes 
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into account the rotational motions and it is shown that 
no well defined equilibrium positions exist for the 
atoms. 

where Q is the momentum transfer and a(r) is the 
scattering-length density of Br which may be expanded 
into symmetry-adapted functions. 

Experimental and 

a(r) = a(1),~o)(r- p)bar/r 2, 

Because of the high absorption for X-rays, neutrons 
were used. A powder experiment at the H12 spectrom- 
eter at the Saclay Reactor failed because of rapid 
sublimation (Meriel, 1977). Thus single-crystal neutron 
diffraction was necessary. 

Sample preparation 
A single crystal was grown from vapour at 52°C in 

a sphere of quartz (0.3 cm 3) and set in an aluminium 
furnace. The temperature was controlled by a thermis- 
tor and, to prevent sublimation, a temperature gradient 
was applied. 

Data collection 
Data were collected at 52.0_+ 0-5°C on the H9 

spectrometer (Saclay). A monochromatic beam (2 = 
1.197 A) was used. o2-20 scans were made for all 
Bragg intensity measurements with a step size of 0.1 ° 
in 2t). Background measurements were made for each 
Bragg position after removing the sample from the 
furnace. 24 reflexions were measured; only 16 have 
significant values. True absorption (p = 0.09 cm-D 
was neglected. Since it is probable that the intense 111 
and 200 reflexions suffer from extinction, they were 
omitted from the refinement. 

a(O,~o) = Z E ClmKlm(O,q)), 
I m 

where p = C - B r  length, bBr is the scattering length of 
Br, 0,~0 are the polar angles of r, and K~m are cubic 
harmonics (yon der Lage & Bethe, 1947; Altmann & 
Cracknell, 1965). 

Then 

Fr°t(Q)=4nbar ~. Z itjt(QP)CtmKt,,,(J2e), 
I m 

where J29 denotes the polar angles of the scattering 
vector Q in a coordinate system defined by the 
crystallographic axes, and JI(QP) are the spherical 
Bessel functions. 

If we neglect correlations between translational and 
rotational motions, Fr°t(Q) is simply weighted with the 
Debye-Waller factor corresponding to the centre of 
mass motion. Then the structure factor is 

F(Q) = exp[-- W(Q)I Fr°t(Q). 

Table 1. Observed and calculated structure factors 

Reflexions 1 I 1 and 002 were omitted from the refinement. 

Analysis of the data 

Crystallographic data 
The lattice constant is a = 8.82 +_ 0-01 A and the 

crystal is face-centred cubic with Z -- 4. 

Structure determination 
Because the present experimental data are limited 

and the disorder cannot be considered as static, a 
conventional least-squares refinement was not possible. 
Thus we have developed computer programs to fit the 
data by a method given by Seymour & Pryor (1970) 
and Press & H/iller (1973). 

According to this last paper, the rotational form 
factor for the Br atoms is written 

Fr"t(Q) = f exp(iQr)a(r) dr, 
c e l l  

c 
lsotropic All 

h k l F,, term only terms 

1 1 1 1.507 1.720 2.120 
0 0 2 1.263 1.208 1.506 
2 2 0  0-152 0.208 0.152 
3 1 1 O. 106 0-063 0-095 
2 2 2  0.141 0.068 0.193 
0 0 4  0-395 0.191 0.406 
3 3 1 0.242 0.300 O. 196 
2 2 4 0.468 0.408 0.458 
3 3 3 0-676 0.422 0.655 
1 1 5 0.424 0.422 0.462 
4 4 0 0.056 0.382 0.089 
0 0 6  0.365 0.321 0.372 
4 4 2  0.319 0.321 0.302 
3 3 5 0.217 0.207 0.212 
6 2 2  0.113 0.192 0.141 
4 4 4  0.183 0.141 0.169 
5 5 1 0.000 0.111 0.043 
1 1 7 0.111 0.084 
5 5 3 0.061 0.040 
8 0 0 0-046 0.020 
7 3 3 0.042 0.019 
6 4 4 0.040 0.013 
0 6 6 0.037 0.031 
8 2 2 0.037 0.016 
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Owing to the symmetry invariance of a(O,~) the cubic 
harmonics belong to the totally symmetric represen- 
tation A1 (m = 1) and only a few coefficients c n are 
different from zero. 

For one molecule at the lattice origin, the structure 
factor is 

= exp(--~QE(uZ)){bc + 4bB~[jo(Qp) 

+ c~,j4(Qp)K'41(Y20) - ct61 j6(Qp)K'6,(,(20) 

+ e'81/J's(Qp)K'aI(Y20) + . . . l} .  

F(Q)  

(u 2) is an isotropic mean-squared amplitude, and b c = 
0-665 and bBr = 0.68 (in units of 10 -~z cm) are the 
scattering lengths of C and Br. The 4zc coefficient drops 
out by the use of etm = e~m/V/(4rc) and K I" with omission 
of the common factor 1/x/'(470 of the cubic harmonics. 

The data were fitted to this model with the following 
parameters: a scale factor, the C - B r  length, a Debye-  
Waller factor (the same for the C atom and the centre 

? ? ? of mass) and the three coefficients e4t, e6~, es~. 
The first fit was made with the isotropic term Jo(QP). 

The weighted reliability factor R w is 40-0% with p = 
1.89 A and (u 2) = 0.16 A 2 for the 14 retained 
reflexions. The last fit with all coefficients leads to R , . =  
6.5% with p = 1.89 (2) A, (u 2) = 0.20 (4) A z, c~, = 

' = - 0 . 8 4 6  (33),c~1 = 0 . 0 1 8  (1). 0.077 (3), C61 
Table 1 shows the observed and calculated structure 

factors for these two fits. 

 .otI°°'l 
-° 1 

D i s c u s s i o n  

On the sphere of radius p, the scattering-length density 
of Br depends on 0 and q~ through 

1 
t 1 t ? a(O,~o) ~-.[1 + c4,K~,(O,q~) + ¢6, K6,(0,~0) 

+ c'81K'8,(O,~o) + . . . l .  
We have represented this function in the plane (1 10) 
(Fig. 1) and on a stereographic projection of the sphere 
of radius p (Fig. 2). The density is a maximum in the 
[ 110] directions and we consider the [ 111 ] directions 
which are absolute minima to be the reorientation axes. 

If a(O,~o) and b(O',cp') are the angular part of the 
scattering-length density referred to the (x,y,z) crystal 
axes and to the (x' ,y' ,z ')  molecular coordinate system 
respectively (Fig. 3), we have 

a(O,~o) = J" dwf(o9)b(O',~o'), 

wheref(o9) is the probability that the molecule is in an 
orientation specified by the Euler angles o9. Because of 
the site and molecule symmetries, we have 

1 
f(og) = ~ Z (2 l+  1)A~t)U.~t~(og), 

[~,o] 

Fig. 1. Angular dependence in the (I iO) plane of the Br density on 
a sphere ofradius p = C-Br. 

I°,°l  ,oo 

I / / \ '\ t \ ,50 ° 

Io, k J/,.': 
oo _ _  

ioo,l_l - o  ,!OI L 
Fig. 2. Stereographic projection of the angular part of the Br 

density (in arbitrary units). 

where the cubic rotator functions ~/I U,,,.(o9) are defined by 

Krm,(O, tp, ) = ~ Kr,,,,,(0,~0 )Um,,m,~t'~ (co) 
m "  

(James & Keenan, 1959). 
We obtain 

a(O, cp) = ~ A")biKtl(O,(o), 
I 

which we may compare with 

a(O.~o) = x/£ c,K,,(O.(o). 
I 
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Fig. 3. Euler angles. In the (x',y',z') coordinate system, the 
molecular site has T a symmetry. The lattice is referred to the 
(x,y,z) axes. The two systems are related by the Euler angles w 

Therefore,  

A "~ = c /b  r 

For  the molecular  te t rahedron in the (x ' , y ' , z ' )  coordi- 
nate system (Fig. 3) we have 

4 v/26; b ~ -  
b' 4 = - ; b~, - 9 27 

Then 

A 4 = - 0 . 0 5 ,  A 6 = - 0 . 3 7 3 ,  A 8 = 0.02.  

A numerical  calculat ion shows that f(og) is a minimum 
when the molecular  axes are parallel to the crystal  axes 
and the maxima are obtained by 45 ° rotat ions round 

the crystal  axes (e.g., ~ = f l =  0, y =  45° ;  ~ =  Y= 0, 
fl = 4 5 ° ; . . . ) .  

It is clear that  these results are consistent  with those 
deduced from the phase II structure. Phase  I can be 
regarded as six different molecules rotat ing around the 
[ 11 I I axes. Each molecule has a maximum of  orienta- 
tional probabil i ty when it is in sites of D2d symmetry .  
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The D e b y e - W a l l e r  factor  (u 2) = 0 .20  A 2 corre- 
sponds to a large t ranslat ional  mean-squared displace- 
ment. We have measured the sound velocities; the mean 
values are approximate ly:  longitudinal,  v t = 1400; 
transversal ,  v t = 800 m s -~. In the Debye  approxi- 
mat ion 

9 k T F  V [1 -~32 )12/3 
_ -  + = 0 . 1 9  A2, 

which is the same as the experimental  value. Thus the 
correlat ions between t ranslat ional  and rotat ional  
motions are of  great importance.  Recent ly  Rudman  
(1977) has shown that  the transit ion in methyl- 
chloroform is due to a 0.5 A shift of  the molecular  
centres. We were unable to determine precisely such a 
shift in CBr 4 but we think that  the transi t ion mecha- 
nism is probably  the same. 

The authors  thank  Dr P. Meriel for the use of  experi- 
mental  equipment  at the Laboratoi re  Leon Brillouin 
(Saclay) and for his kind interest in this work. 
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